Abstract:The thermal enhancement of parabolic trough collectors is a critical issue and numerous ideas have been applied in the literature on this domain. The objective of this paper is to investigate some usual thermal enhancement techniques for improving the performance of evacuated and non-evacuated receivers of parabolic trough solar collectors. More specifically, the use of twisted tape inserts, perforated plate inserts, and internally finned absorbers are compared with the reference case of the smooth absorber. The analysis is conducted with a developed and validated thermal model in Engineering Equation Solver. The collector is investigated for a typical flow rate of 100 L/min and for inlet temperatures between 50 • C and 350 • C with Syltherm 800 as working fluid. According to the final results, the use of internally finned absorber leads to the highest thermal efficiency enhancement, which is up to 2.1% for the non-evacuated collector and up to 1.6% for the evacuated tube collector. The perforated plate inserts and the twisted tape inserts were found to lead to lower enhancements, which are up to 1.8% and 1.5%, respectively, for the non-evacuated collector, while they are up to 1.4% and 1.2%, respectively, for the evacuated collector. Moreover, the pressure drop increase with the use of the thermal enhancement methods is investigated and the use of internally finned absorber is found again to be the superior technique with the performance evaluation criterion to be ranged from 1.5 to 1.8 for this case.