Selective laser melting (SLM) is one of the promising techniques for producing metallic glass components with unlimited geometries and dimensions. In the case of iron-based metallic glasses, the appearance of cracks remains a problem. In this work, two alloys Fe48Mo14Cr15Y2C15B6 and (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20, differing in their plasticity, were printed with a double stage scanning strategy. Both alloys were characterized by a fully amorphous structure and a crack grid that coincided with the hatch distance in the first scan. Segregations of metalloids were observed in the vicinity of the cracks. Fe48Mo14Cr15Y2C15B6 samples were characterized by a high compression strength of 1298 ± 11 MPa and zero plasticity. The compression strength of the (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 samples was 142 ± 22 MPa. The results obtained suggest that further development of scanning strategies and research on the influence of alloying elements is needed.