Biodegradable nanocomposite films are novel materials for food packaging because of their potential to extend the shelf life of food. In this research, the performance of cassava starch-zincnanocomposite film was evaluated for tomatoes packaging. The films were developed by casting the solutions of 24 g cassava starch, 0-2% (w/w) zinc nanoparticles and 55% (w/w) glycerol in plastic mould of 12 mm depth. The permeability of the films, due to water and oxygen, was investigated at 27°C and 65% relative humidity while the mechanical properties were determined by nanoindentation technique. The average thickness of the dried nanocomposite films was found to be 17±0.13 µm. The performances of films for tomatoes packaging was evaluated in comparison with low density polyethylene (LDPE; 10 µm) at the temperature and period ranges of 10-27°C and 0-9 days, respectively. The quality and microbial attributes of the packaged tomatoes, including ascorbic acid, β-carotene and total coliform were analysed at an interval of 3 days. The results revealed that the water vapour permeability increased while the oxygen permeability decreased with the nanoparticles (P<0.05). The hardness, creep, elastic and plastic works, which determined the plasticity index of the film, decreased generally with the nanoparticles. The films containing 1 and 2% of the nanoparticles suppressed the growth of microorganisms and retained the quality of tomatoes than the LDPE at 27°C and day-9 of packaging (P<0.05). The results implied that the film could effectively be used for tomatoes packaging due to their lower oxygen permeability, hardness, elastic and plastic works.