Soft matter bioelectronics represents an emerging and interdisciplinary research frontier aiming to harness the synergy between biology and electronics for advanced diagnostic and healthcare applications. In this context, a whole family of soft gels have been recently developed with self-healing ability and tunable biological mimetic features to act as a tissuelike space bridging the interface between the electronic device and dynamic biological fluids and body tissues. This review article provides a comprehensive overview of electroactive polymer gels, formed by noncovalent intermolecular interactions and dynamic covalent bonds, as injectable electroactive gels, covering their synthesis, characterization, and applications. First, hydrogels crafted from conducting polymers (poly(3,4-ethylene-dioxythiophene) (PEDOT), polyaniline (PANi), and polypyrrole (PPy))-based networks which are connected through physical interactions (e.g., hydrogen bonding, π−π stacking, hydrophobic interactions) or dynamic covalent bonds (e.g., imine bonds, Schiff-base, borate ester bonds) are addressed. Injectable hydrogels involving hybrid networks of polymers with conductive nanomaterials (i.e., graphene oxide, carbon nanotubes, metallic nanoparticles, etc.) are also discussed. Besides, it also delves into recent advancements in injectable ionic liquid-integrated gels (iongels) and deep eutectic solvent-integrated gels (eutectogels), which present promising avenues for future research. Finally, the current applications and future prospects of injectable electroactive polymer gels in cutting-edge bioelectronic applications ranging from tissue engineering to biosensing are outlined.