“…1. 緒 言 次世代生産体系において新たな高機能・高付加価値製品を創出する上で,マイクロ加工技術の重要度は増して おり 樋口, 2003) ,半導体プロセス をはじめ,超精密機械加工 ) ,マイクロ放電加工 ) ,マイクロレーザ加工 ) , 電子ビーム・イオンビーム加工 , ナノインプリント加工 (Chou, et al, 1995) , 自己組織化プロセス といった,多様な加工原理に基づいたマイクロ加工技術の研究・開発 が進められている.そのような中,マイクロメートル加工単位での複雑な三次元構造体の創製技術は,特異な力 , 学的機能 (Chaste, et al, 2012) ,電磁気学的機能 の発現が可能で あり,次世代高機能デバイスを実現する上で重要な基盤加工技術の一つと位置づけられる.このような複雑三次 元構造創製法としては,主にエネルギービームによる付加型三次元微細構造創製法を中心に,FIB によるデポジ ション加工 (Ashiba, et al, 2012) ,多光子励起による樹脂硬化 ) ,超短パルスレーザーによる金 属イオン直接還元法 ) ,レーザトラップアシスト加工法 (Fujishima and Honda, 1972;Anpo, 2000) .環境分野等の他分野での適用事例と比較し,現状,微細加工分野への適用事例は多くはない Herrmann, et al, 1988;が,光触媒の金属イオン還元特性に着目した微細加工法の探求 が進められており,酸化チタン光触媒基板上の光照射領域に還元析出させた銀 や白金 (Herrmann, et al, 1988) Horita, Yoshigoe, Matsuda, Michihata, Takamasu and Takahashi, Transactions of the JSME (in Japanese), Vol.81, No.832 (2015) Chaste, J., Eichler, A., Moser, J., Ceballos, G. , Rurali, R. and Bachtold, A., A nanomechanical mass sensor with yoctogram resolution, Nature Nanotechnolgy, Vol.7 (2012), pp.301-304.…”