Abstract:We have investigated the plasmonic trapping of dielectric nanoparticles by using engineered gold nanoblock pairs with ~5-nm gaps. Pairs with surface-plasmon resonance peaks at the incident wavelength allow the trapping of 350-nm-diameter nanoparticles with 200 W/cm 2 laser intensities, and their plasmon resonance properties and trapping performance are drastically modified by varying the nanoblock size of ~20%. In addition, plasmon resonance properties of nanoblock pairs strongly depend on the direction of the linear polarization of the incident laser, which determines the trapping performance.
©2011 Optical Society of America
References and links1. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys.Rev. Lett. 83(22), 4534-4537 (1999). 2. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys.