Nanoparticles
find increasing applications in life science and
biomedicine. The fate of nanoparticles in a biological system is determined
by their protein corona, as remodeling of their surface properties
through protein adsorption triggers specific recognition such as cell
uptake and immune system clearance and nonspecific processes such
as aggregation and precipitation. The corona is a result of nanoparticle–protein
and protein–protein interactions and is influenced by particle
design. The state-of-the-art design of biomedical nanoparticles is
the core–shell structure exemplified by superparamagnetic iron
oxide nanoparticles (SPIONs) grafted with dense, well-hydrated polymer
shells used for biomedical magnetic imaging and therapy. Densely grafted
polymer chains form a polymer brush, yielding a highly repulsive barrier
to the formation of a protein corona via nonspecific
particle–protein interactions. However, recent studies showed
that the abundant blood serum protein albumin interacts with dense
polymer brush-grafted SPIONs. Herein, we use isothermal titration
calorimetry to characterize the nonspecific interactions between human
serum albumin, human serum immunoglobulin G, human transferrin, and
hen egg lysozyme with monodisperse poly(2-alkyl-2-oxazoline)-grafted
SPIONs with different grafting densities and core sizes. These particles
show similar protein interactions despite their different “stealth”
capabilities in cell culture. The SPIONs resist attractive interactions
with lysozymes and transferrins, but they both show a significant
exothermic enthalpic and low exothermic entropic interaction with
low stoichiometry for albumin and immunoglobulin G. Our results highlight
that protein size, flexibility, and charge are important to predict
protein corona formation on polymer brush-stabilized nanoparticles.