The swelling and
collapsing of thermo-responsive poly(
N
-isopropylacrylamide)-based
polymer (pNIPAAm) networks are investigated
in order to reveal the dependency on their kinetics and maximum possible
actuation speed. The pNIPAAm-based network was attached as thin hydrogel
film to lithographically prepared gold nanoparticle arrays to exploit
their localized surface plasmon resonance (LSPR) for rapid local heating.
The same substrate also served for LSPR-based monitoring of the reversible
collapsing and swelling of the pNIPAAm network through its pronounced
refractive index changes. The obtained data reveal signatures of multiple
phases during the volume transition, which are driven by the diffusion
of water molecules into and out of the network structure and by polymer
chain re-arrangement. For the micrometer-thick hydrogel film in the
swollen state, the layer can respond as fast as several milliseconds
depending on the strength of the heating optical pulse and on the
tuning of the ambient temperature with respect to the lower critical
solution temperature of the polymer. Distinct differences in the time
constants of swelling and collapse are observed and attributed to
the dependence of the cooperative diffusion coefficient of polymer
chains on polymer volume fraction. The reported results may provide
guidelines for novel miniature actuator designs and micromachines
that take advantages of the non-reciprocal temperature-induced volume
transitions in thermo-responsive hydrogel materials.