Long-distance (⩾10 mm) arterial vascular defect injury was a massive challenge affecting human health. Compared with autologous transplantation, tissue-engineered scaffolds such as biocompatible silk fibroin (SF) scaffolds have been developed because they exhibit equivalent functional repair effects without adverse reactions. However, its mechanical strength and structural stability needed to be further improved to match the longer repair cycle of blood vessels while maintaining the original biological safety. Hence, we designed and prepared SF and hydrophobic polycaprolactone (PCL) composite microfibers by an improving electrospinning method. It was found that when the weight ratio of PCL to SF was 1: 1, a microfiber scaffold with high strength (6.16 N) and minimum degradability can be obtained. More importantly, compared with natural silk fibroin, the novel composite microfiber scaffolds can slightly inhibit cell infiltration and inflammation through co-culture with HUVECs in vitro and rabbit back transplantation in vivo. Furthermore, the fabricated scaffolds also demonstrated excellent structural stability in vivo because of the well-organized PCL doping in the structure. All these results indicated that the novel PCL/SF composite microfiber scaffolds were promising candidates for vascular tissue engineering applications.