Encoding of several sensory modalities into neural signals is mediated by ribbon synapses. The synaptic ribbon tethers synaptic vesicles at the presynaptic active zone (AZ) and might act as a super-scaffold organizing AZ topography. Here we employed a synthetic biology approach to reconstitute ribbon-type AZs in HEK293 cells for probing their minimal molecular requirements and studying presynaptic Ca2+ channel clustering. Co-expressing a membrane-targeted version of the AZ-protein Bassoon and the ribbon core protein RIBEYE, we observed structures recapitulating basic aspects of ribbon-type AZs, which we call synthetic ribbons or SyRibbons. SyRibbons with Ca2+ channel clusters formed upon additional expression of CaV1.3 Ca2+ channels and RIM-binding protein 2 (RBP2), known to promote presynaptic Ca2+ channel clustering. Confocal and super-resolution microscopy along with functional analysis by patch-clamp and Ca2+-imaging revealed striking similarities and interesting differences of SyRibbons in comparison to native IHC ribbon-type AZs. In summary, we identify Ca2+ channels, RBP, membrane-anchored Bassoon, and RIBEYE as minimal components for reconstituting a basic ribbon-type AZ. SyRibbons might complement animal studies on molecular interactions of AZ proteins.