A study of the self-assembly of silver atom intercalated 5,5 0 -bis(mercaptomethyl)-2,2 0 -bipyridine (BPD; HS-CH 2 -(C 5 H 3 N) 2 -CH 2 -SH) and 1,4-benzenedimethanethiol (BDMT; HS-CH 2 -(C 6 H 4 )-CH 2 -SH)) dithiol (DT) multilayers on gold is presented. The bilayer of these SAMs can be obtained starting from the exposure of a DT monolayer to a concentrated silver ion solution. After grafting the silver atoms on the sulfur end group, the incubation of the resulting DT-Ag SAM in a DT solution leads to the formation of a DT-Ag-DT bilayer. This process was extended to make a multilayer structure. The corresponding changes in these self-assembled layers on Au are characterized by X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE) measurements, and I-V characteristics. Our interpretation of evolution in the absorbed layer are based on changes in intensities of peaks in XPS related to S bound to substrate or Ag and in -SH groups, as well as changes in thickness and absorption features in SE measurements. The latter show the evolution in absorbance wavelength as a function of thickness and indicate a decrease in the HOMO-LUMO gap from about 4.5 eV to 4 eV. The I-V characteristics show a significant bias dependence on the number of the BPD layers and there appears to be a transition from tunneling to a hopping regime when going from the single to the multiple layers.