Atomic layer deposition (ALD) is a chemical vapour deposition (CVD) method that allows the layer-by-layer growth of functional materials by exposing a surface to different precursors in an alternative fashion. Thus, thanks to gas-solid reactions that are substrate-limited and self-terminating, precise control over thickness below the nanometer level can be achieved. While ALD was originally developed to deposit uniform coatings over large areas and on high-aspect-ratio features, in recent years the possibility to perform ALD in a selective fashion has gained much attention, in what is known as area-selective deposition (ASD). ASD is indeed a novel 3D printing approach allowing the deposition of functional materials (for example metals to oxides, nitrides or sulfides) with nanometric resolution in Z. The chapter will present an introduction to ALD, which will be followed by the description of the different approaches currently being developed for the ASD of functional materials (including initial approaches such as surface pre-patterning or activation, and newer concepts based on spatial CVD/ALD). The chapter will also include a brief overview of recent works involving the use of ALD to tune the properties of 3D printed parts.