Abstract:The submicron changes of the morphological properties of the surface can provide one of the earliest indications of the degradation of the material due exposition to a certain media. Atomic force microscopy, as the tool delivering 3D quantitative imaging of the surface with ultimate resolution, is successfully utilized in the detection of the materials degradation. Yet, a several issues such as the materials non-homogeneity and the presence of the morphological artifacts must be taken into account in terms of the reliability of obtained data, while their presence in the scanned area may cause a significant deviation of the measurement outcome from the values being representative to the condition of the investigated material. In this paper the approach based on the precise sample positioning at each stage of the verification of the deterioration progress is presented. This novel method allows to acquire the information with unique sensitivity and high degree of confidence. Moreover, the observation of the morphology changes at several spots with high receptivity enables determination of the homogeneity of the deterioration, which may play essential role in case of investigation of behavior of complex materials (containing additives or fillers), in particular nanomaterials. A set of experimental results acquired on the polycarbonate and polyethylene samples is here presented, revealing the efficiency of presented approach and its advantages over the commonly applied methods.