Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this study, we investigated the spatial distribution and homogeneity of gold nanoparticles (AuNPs) on an alumina (Al2O3; AAO) substrate for potential application as surface-enhanced Raman scattering (SERS) sensors. The AuNPs were synthesized through thermal treatment at 450 °C at varying times (5, 15, 30, and 60 min), and their distribution was characterized using field-emission scanning electron microscopy (FE-SEM) and scanning transmission electron microscopy (STEM). The FE-SEM and STEM analyses revealed that the size and interparticle distance of the AuNPs were significantly influenced by the duration of thermal treatment, with shorter times promoting smaller and more closely spaced nanoparticles, and longer times resulting in larger and more dispersed particles. Raman spectroscopy, using Rhodamine 6G (R6G) as a probe molecule, was employed to evaluate the SERS enhancement provided by the AuNPs on the AAO substrate. Raman mapping (5 µm × 5 µm) was conducted on five sections of each sample, demonstrating improved homogeneity in the SERS effect across the substrate. The topological features of the AuNPs before and after R6G incubation were analyzed using atomic force microscopy (AFM), confirming the correlation between a decrease in surface roughness and an increase in R6G adsorption. The reproducibility of the SERS effect was quantified using the maximum intensity deviation (D), which was found to be below 20% for all samples, indicating good reproducibility. Among the tested conditions, the sample synthesized for 15 min exhibited the most favorable characteristics, with the smallest average nanoparticle size and interparticle distance, as well as the most consistent SERS enhancement. These findings suggest that AuNPs on AAO substrates, particularly those synthesized under the optimized condition of 15 min at 450 °C, are promising candidates for use in SERS-based sensors for detecting cancer biomarkers. This could be attributed to temperature propagation promoted at the time of synthesis. The results also provide insights into the influence of thermal treatment on the spatial distribution of AuNPs and their subsequent impact on SERS performance.
In this study, we investigated the spatial distribution and homogeneity of gold nanoparticles (AuNPs) on an alumina (Al2O3; AAO) substrate for potential application as surface-enhanced Raman scattering (SERS) sensors. The AuNPs were synthesized through thermal treatment at 450 °C at varying times (5, 15, 30, and 60 min), and their distribution was characterized using field-emission scanning electron microscopy (FE-SEM) and scanning transmission electron microscopy (STEM). The FE-SEM and STEM analyses revealed that the size and interparticle distance of the AuNPs were significantly influenced by the duration of thermal treatment, with shorter times promoting smaller and more closely spaced nanoparticles, and longer times resulting in larger and more dispersed particles. Raman spectroscopy, using Rhodamine 6G (R6G) as a probe molecule, was employed to evaluate the SERS enhancement provided by the AuNPs on the AAO substrate. Raman mapping (5 µm × 5 µm) was conducted on five sections of each sample, demonstrating improved homogeneity in the SERS effect across the substrate. The topological features of the AuNPs before and after R6G incubation were analyzed using atomic force microscopy (AFM), confirming the correlation between a decrease in surface roughness and an increase in R6G adsorption. The reproducibility of the SERS effect was quantified using the maximum intensity deviation (D), which was found to be below 20% for all samples, indicating good reproducibility. Among the tested conditions, the sample synthesized for 15 min exhibited the most favorable characteristics, with the smallest average nanoparticle size and interparticle distance, as well as the most consistent SERS enhancement. These findings suggest that AuNPs on AAO substrates, particularly those synthesized under the optimized condition of 15 min at 450 °C, are promising candidates for use in SERS-based sensors for detecting cancer biomarkers. This could be attributed to temperature propagation promoted at the time of synthesis. The results also provide insights into the influence of thermal treatment on the spatial distribution of AuNPs and their subsequent impact on SERS performance.
A common issue in studies on liquid-phase chemical processes is that the natural solid nanoimpurities present in reagent-grade chemicals are ignored. Little is known about these impurities’ nature, sizes, concentrations, and behavior, yet they significantly affect the efficiency of antiscalants in municipal and laboratory solutions. Recent research has focused on: (i) estimating nanoimpurity concentrations in in-house deionized water and semiconductor-grade isopropanol using “light sheet” optical ultramicroscopy, and (ii) visualizing antiscalant sorption on these impurities. Using a fluorescent-tagged antiscalant aminobis(methylenephosphonic acid) (ADMP-F), we tracked its affinity to particulate matter in deionized water and reagent-grade KCl solutions. Our study showed that the total concentration of nanoparticles with a size larger than 20 nm is about 106 units/mL in deionized water and 105 units/mL in isopropanol. Extrapolation of these values to a size ≥1 nm resulted in concentrations of 1011 and 108 units/mL. The addition of KCl or ADMP-F significantly increased foreign nanoparticle populations. ADMP-F is selectively adsorbed by only some impurities, while most antiscalant molecules remain as true solution. To our knowledge, this is the first instance of fluorescently labeled aminoalkylphosphonates being able to differentiate particulate matter traces in reagent-grade purity solutions. Therefore, the role of nanoparticles as crystallization centers should be seriously reconsidered, especially in their important application in scale inhibition.
Understanding the behavior of p-n junctions is fundamental in semiconductor physics and electronics engineering. Traditional teaching methods often focus on material-based definitions of p-type and n-type semiconductors by discussing doping. However, within the depletion region, an additional description is also applicable; this relates to the relative positioning of the energy, which depends on the energy discrepancy between the Fermi (Ef) and intrinsic Fermi (Ei) levels and is also based on carrier type. These two descriptions are at variance when describing the properties of the voltage drop and the energy band bending in the depletion regions of the p-n junction diode in equilibrium, and also when the doping is asymmetrical (Na≠Nd). Our experience teaching introductory semiconductor courses has revealed a lack of clarity regarding the behavior of the region types within the depletion region, which can, in turn, lead to confusion and hinder students’ understanding of the critical concept of voltage drop in the depletion region. This paper aims to underline the difference between the two descriptions above and propose specific terminology for the energy band-based definition in the depletion region; we suggest that instead of “n-type” and “p-type”, the terms “n-like” and “p-like” materials will be used. Further, building on the similarities in energy band bending and potential variations between p-n junctions and MOS capacitors, we suggest that studying the depletion region of p-n junctions can offer valuable insights into the formation and behavior of the inversion layer at the semiconductor surface of MOS capacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.