Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Infections caused by bacteria that are resistant to many drugs are a major threat to public health in many countries around the world. Here we demonstrate the creation of heterogeneous catalytic nanomaterials with outstanding antimicrobial properties against several superbugs. We have shown that replacing a small amount of copper in a generated copper-phosphate-enzyme nanoflower hybrid with silver drastically increases the antimicrobial capacity of the nanomaterial. In this sense, it has been confirmed that the exchange generated silver phosphate nanoparticles on the Cu nanoflowers, with control of the nanoparticle diameter size. The Fenton catalytic activity of the Ag-containing nanobiohybrids was affected, showing better performance with lower amounts of silver in the final hybrid. This effect was confirmed by their antimicrobial efficacy against Escherichia coli , where the Ag 4 Cu 32 @CALB hybrid displayed a log reduction of 3.9, an efficiency more than 5000 times higher than that obtained with copper nanoflowers (Cu 36 @CALB). The hybrid also showed excellent efficacy against other bacteria such as Klebsiella pneumoniae , Pseudomonas aeruginosa , and Mycobacterium smegmatis with log reductions of 7.6, 4.3, and 1.8, respectively.
Infections caused by bacteria that are resistant to many drugs are a major threat to public health in many countries around the world. Here we demonstrate the creation of heterogeneous catalytic nanomaterials with outstanding antimicrobial properties against several superbugs. We have shown that replacing a small amount of copper in a generated copper-phosphate-enzyme nanoflower hybrid with silver drastically increases the antimicrobial capacity of the nanomaterial. In this sense, it has been confirmed that the exchange generated silver phosphate nanoparticles on the Cu nanoflowers, with control of the nanoparticle diameter size. The Fenton catalytic activity of the Ag-containing nanobiohybrids was affected, showing better performance with lower amounts of silver in the final hybrid. This effect was confirmed by their antimicrobial efficacy against Escherichia coli , where the Ag 4 Cu 32 @CALB hybrid displayed a log reduction of 3.9, an efficiency more than 5000 times higher than that obtained with copper nanoflowers (Cu 36 @CALB). The hybrid also showed excellent efficacy against other bacteria such as Klebsiella pneumoniae , Pseudomonas aeruginosa , and Mycobacterium smegmatis with log reductions of 7.6, 4.3, and 1.8, respectively.
In recent years, nanoscience and nanotechnology have gained prominence within materials science, offering new opportunities for cancer diagnosis and treatment. Advances in nanotechnology have allowed for the manipulation and size control of nanomaterials, leading to the development of a wide range of materials. The use of nanomaterials as chemical biology tools in cancer theranostics has been widely investigated, owing to their enhanced stability, biocompatibility, and improved cell permeability. These properties enable precise targeting while addressing the limitations of conventional cancer treatments. Nanoflowers, a specific class of nanomaterials, have recently attracted significant interest due to their promising properties for several biomedical applications. However, despite the growing attention toward nanoflowers, detailed reviews on the subject have been limited. This work focuses on two primary types of hybrid nanoflowers: iron- and copper-based ones. Within this article an overview of recent applications in cancer theranostics are thoroughly reviewed, while the synthesis processes for controlling morphology and size, underlying functions, and their characteristics and uses are also extensively explored, aiming to provide a guide for future developments in the field.
In search of new materials that would help to prevent microbiologically influenced corrosion (MIC), we have designed and synthetized six different copper and copper–silver nanoparticle–enzyme hybrids using a mild-conditions method carried out in water and r.t. Characterization analyses exhibited the presence of small crystalline nanoparticles with diameters from 2 to 20 nm. X-ray diffraction determined that the Cu hybrids were composed of different copper species, depending on the synthetic protocol used, while the Cu–Ag hybrids were mainly composed of copper and silver phosphate metallic species. Then, the bacterial viability of three MIC-relevant enrichments, sulfate-reducing bacteria (SRB), slime-forming bacteria (SFB), and acid-producing bacteria (APB), was studied in the presence of the bionanohybrids. The results demonstrated a notable effect of all bionanohybrids against SRB, one of the most prominent bacteria associated with MIC. In particular, Cu-2 and Cu–Ag-2 showed a reduction in bacterial cells of 94% and 98% after 48 h, respectively, at a concentration of 100 ppm. They also exhibited high efficiencies against SFB, with Cu–Ag-1 and Cu–Ag-2 hybrids being the best, with bacterial reduction percentages of 98% after 45 h of exposition at a concentration of 100 ppm. However, in the case of APB, the effect of the hybrids was lost due to the low pH level generated during the experiment. Finally, the capacity of Cu-2 and Cu–Ag-2 to inhibit the adhesion of SRB to the surface of carbon steel coupons was evaluated. Fluorescence imaging of the surface of the coupons at 24 h demonstrated that the presence of the hybrids inhibited the growth of SRB, obtaining a maximum reduction of 98% with Cu-2. Overall, the results of this study demonstrate that these novel nanomaterials have a wide-range antibacterial effect and may have a promising future in the prevention and treatment of MIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.