Nanostructures exhibiting large transverse magnetooptical Kerr effect (TMOKE) are required for magnetoplasmonic biosensing if the aim is the minituarization and integration into microfluidic devices. In this work, we present a general strategy to design nanoarchitectures with enhanced TMOKE, which consist of an arrangement of gold ribs deposited on an magneto-optical (MO) dielectric slab of Bi:YIG (bismuth-substituted yttrium iron garnet) with a SiO 2 substrate surrounded by water. Using the finite element method (FEM), we demonstrate numerically that the near-zero-transmittance condition is the most important requirement for high TMOKE values. This can be reached through geometric optimization of the nanoarchitecture by tuning the period, height, and width of the grating, thus leading to resonances at wavelengths where the MO dielectric slab has high MO activity. We also show that the TMOKE amplitude can be further increased if losses in metal ribs are reduced. For a magnetoplasmonic grating with optimized geometry, we demonstrated the potential detection of biologically relevant analytes with sensitivity in the order of 10 2 nm/RIU (refractive index unit). Since the nanoarchitecture proposed is experimentally feasible with, e.g., nanolithography techniques, one may expect that the design strategy may inspire the development of efficient magnetoplasmonic sensing platforms.