Controlling the hybridization of single atoms in suitable host materials opens unique opportunities for catalyst design, but equally faces many challenges. Here, we highlight emerging directions from the last, highly productive, decade in single-atom catalysis and identify frontiers for future research. Origins and evolution of single-atom catalysis The isolation of elements as atoms in chemically-distinct substances played fundamental catalytic roles, for example, in metalloenzymes, organometallic complexes, and open framework structures, long before this concept was extended to widely applied heterogeneous catalysts based on supported metals. In pioneering early work, Flytzani-Stephanopoulos et al. provided convincing evidence that ionic gold or platinum species strongly associated with the surface of ceria, and not the metal nanoparticles, were responsible for the activity observed in the water-gas shift reaction (Fig. 1, L1) 1. Subsequently, Bashyam and Zelenay proposed that oxidized cobalt and iron species coordinated to nitrogen and oxygen in functionalized carbons deliver high performance in the electrochemical oxygen reduction reaction (Fig. 1, L2) 2. After years of speculation about the catalytic role of single atoms of this group of elements, advances in experimental techniques made it possible to confirm the exclusive presence of isolated centers. In their landmark paper, Zhang et al. confirmed the high efficiency of platinum atoms supported on iron oxide for CO oxidation, introducing a new paradigm in heterogeneous catalysis (Fig. 1, L3) 3. The first catalytic applications of single-atom alloys based on metal hosts followed shortly after (Fig. 1, L5) 4. In just a decade, the topic of single-atom catalysis has become a highly transversal field of contemporary chemical research. Early researchers quickly recognized the potential cost benefits of using atomically-dispersed species for precious metals, and improving the utilization became a central driver in the topic. As the area developed, the motivation also evolved. Comparative studies revealed that the strategy of using SACs does not apply to all applications and depends on the reaction requirements 5. Another strength is the higher uniformity of potential active sites in heterogeneous catalysts based on single atoms compared to nanoparticles. The well-defined nature is attractive for both defining structure-function relationships and computational modeling. Furthermore, the close structural resemblance to molecular complexes provides a bridge between homogeneous and heterogeneous catalysis. On the 10-year journey since the consolidation of the topic, single-atom catalysis has crossed the periodic table. The diversity of host materials has also expanded. While metal oxides were initially most widely studied, tailored carbons have superseded all other types in the last years.