Cancer immunotherapy is an innovative way of treating cancer by stimulating individual cells to overcome cancer. Widespread biomedical studies were carried out with the aim of exploring immunotherapy cancer therapeutics, and this review spotlights some mechanisms in which it was developed, namely immune checkpoint inhibitors (E.G PD-1/PD-L1, CTLA-4), adoptive cell therapy (e.g., CAR T-cell therapy), and cancer vaccines. Although it has shown clinical benefit in a number of cancer types, including melanoma and non-small-cell lung cancer, several challenges have dampened enthusiasm for this approach, from the differing patient response rates to toxicities. Nanotechnology in drug delivery systems must play a role in overcoming the same. Nanotechnology enables increased specificity and controlled drug release, improved solubility and bioavailability, can treat the tumor specifically, and localized drug delivery at the disease site decreases systemic toxicity. The review also features advances in the construction of lipid-based, polymeric, and inorganic nanoparticles that improve drug stability and allow the delivery of cotherapeutic agents. Nanotechnology-based delivery systems can be used alone or in combination with immunotherapy to assist in improving the immune response, gaining access to the tumor microenvironment, and overcoming biological barriers. Thus, the nano-DDS were both safe and effective in preclinical studies, and ongoing clinical trials have shown that they are capable of increasing the therapeutic index of anticancer drugs. Lastly, the review also discusses current challenges and regulatory issues in advancing these technologies and highlights the importance of further research to devise appropriate methodology for efficient functionalization of nanotechnology for individualized cancer solutions in cancer treatment.