Fabric conditioners are household products used to impart softness and fragrance to textiles. They are colloidal dispersions of cationic double chain surfactants that self-assemble in vesicles. These surfactants are primarily derived from palm oil chemical modification. Reducing the content of these surfactants allows to obtain products with lower environmental impact. Such a reduction, without adverse effects on the characteristics of the softener and its performance, can be achieved by adding hydrophilic biopolymers. Here, we review the role of guar biopolymers modified with cationic or hydroxyl-propyl groups, on the physicochemical properties of the formulation. Electronic and optical microscopy, dynamic light scattering, X-ray scattering and rheology of vesicles dispersion in the absence and presence of guar biopolymers are analyzed. Finally, the deposition of the new formulation on cotton fabrics is examined through scanning electron microscopy and a new protocol based on fluorescent microscopy. With this methodology, it is possible to quantify the deposition of surfactants on cotton fibers. The results show that the approach followed here can facilitate the design of sustainable home-care products.