The acceptability and feasibility of large-scale testing with lateral flow tests (LFTs) for clinical and public health purposes has been demonstrated during the COVID-19 pandemic. LFTs can detect analytes in a variety of samples, providing a rapid read-out, which allows selftesting and decentralized diagnosis. In this Review, we examine the changing LFT landscape with a focus on lessons learned from COVID-19. We discuss the implications of LFTs for decentralized testing of infectious diseases, including diseases of epidemic potential, the 'silent pandemic' of antimicrobial resistance, and other acute and chronic infections. Bioengineering approaches will play a key part in increasing the sensitivity and specificity of LFTs, improving sample preparation, incorporating nucleic acid amplification and detection, and enabling multiplexing, digital connection and green manufacturing, with the aim of creating the next generation of high-accuracy, easy-to-use, affordable and digitally connected LFTs. We conclude with recommendations, including the building of a global network of LFT research and development hubs to facilitate and strengthen future diagnostic resilience.
Sections• Bioengineering approaches, such as the use of nano-and quantum materials, nucleic-acid-based LFTs, CRISPR and machine learning, will improve the sensitivity, specificity, multiplexing and connectivity features of LFTs.• We recommend investing in an international LFT research and development hub network to spearhead the development of a pipeline of innovative bioengineering approaches to design next-generation LFTs.