Biomass can be converted into energy, fuels, and value-added products by adopting proper conversion or production methods. For many years, biomass has been considered to be a good candidate for producing biochar or activated carbon. The awareness created on mitigation of carbon dioxide (CO2), which is the major cause of global warming, necessitated developing potential methods and materials for curbing CO2 originating from various sources. Adsorption is the most viable option to mitigate CO2 by using activated carbon which can be derived from various biomass sources. In recent years, activated carbon has been produced from different biomass substances by varying carbonization and activation duration, carbonization and activation temperature, impregnation ratio, and the concentration of the activating agent to improve its surface area and porosity. This review article provides a comprehensive review on utilization, production and characterization of biomass-based activated carbon for CO2 adsorption. Initially, the article discusses the review of research works carried out on utilization of biomass-based activated carbon for CO2 adsorption. Furthermore, the article presents the research works carried out on surface textural characteristics, physicochemical properties, and maximum adsorption capacity of activated carbon obtained from different biomass substances. Finally, the article presents the research works carried out related to the biomass-based activated carbon and the parameters significantly enhancing the CO2 adsorption performance.