This paper describes a Natural Language Generation system (NLG), How was School Today? that automatically creates a personal narrative from sensor data and other media (photos and audio). It can be used by children with complex communication needs in schools to support interactive narrative about personal experiences. The robustness of story generation to missing data was identified as a key area for improvement in a feasibility study of the system at a fi special needs school. This paper therefore suggests three possible methods for generating stories from unstructured data: clustering by voice recording, by location, or by time. Clustering based on voice recordings resulted in stories that were perceived as most easy to read, and to make most sense, by parents in a quantitative evaluation. This method was implemented in the live system, which was developed and evaluated iteratively at a second special needs school with children with diff t usage profi Open challenges and possibilities for nlg in augmented and alternative communication are also discussed.