“…𝑠 (𝑧, 𝑡) − 𝛼]}• 𝐹(𝑧, 𝑡) + 𝑗𝜅𝑅(𝑧, 𝑡) + 𝑠̃𝑓(𝑧, 𝑡), 𝑠 (𝑧, 𝑡)− 𝛼]}• 𝑅(𝑧, 𝑡) + 𝑗𝜅𝐹(𝑧, 𝑡) + 𝑠̃𝑟(𝑧, 𝑡),(26) where𝑁(𝑧, 𝑡) is the carrier density, 𝐼(𝑡) the injected current, 𝑒 the electron charge, 𝑉 the active region volume, 𝜏 𝑐 the carrier lifetime, 𝑣 𝑔 = 𝑐 𝑛 𝑔 ⁄ the group velocity, 𝑐 the speed of light, 𝑛 𝑔 the group index, 𝑃 𝑠 (𝑧, 𝑡) = 𝑛 𝑒𝑓𝑓 (𝑧, 𝑡)| 2 + |𝑅(𝑧, 𝑡)| 2 ] the photon density distribution, 𝑛 𝑒𝑓𝑓 = 𝑛 𝑒𝑓𝑓 0 − 𝜆 0 (4𝜋) ⁄ 𝛼 𝐿𝐸𝐹 𝛤𝑔(𝑧, 𝑡) effective index, 𝑛 𝑒𝑓𝑓 0 effective index without injection, 𝜆 0 the peak gain wavelength, 𝛼 𝐿𝐸𝐹 linewidth enhancement factor, 𝛤 the optical confinement factor, 𝑔(𝑧, 𝑡) = 𝑎 ln[𝑁(𝑧, 𝑡) 𝑁 0⁄ ] the material optical gain, 𝑎 the material gain coefficient, 𝑁 0 the transparent carrier density, ℎ Planck's constant, 𝑣 0 the optical frequency corresponding to 𝜆 0 , 𝜀 0 the permittivity of a vacuum, 𝜇 0 the permeability of a vacuum, 𝑑 thickness of active region, 𝑤 width of active region, 𝐹(𝑧, 𝑡) the slowly varying envelopes of the forward propagating fields, 𝑅(𝑧, 𝑡) the slowly varying envelopes of the backward propagating fields, 𝜀 nonlinear gain suppression coefficient, 𝑗 the imaginary unit, 𝛿 = [2𝜋𝑛 𝑒𝑓𝑓 0 𝐿𝐸𝐹 𝛤𝑔(𝑧, 𝑡) − 𝜋 Λ ⁄ ] the phase detuning factor from the Bragg wavelength, 𝛬 Bragg grating period, 𝛼 the optical modal loss, and 𝜅 grating coupling coefficient.The magnitude of the spontaneous emission noise fields 𝑠̃𝑓(𝑧, 𝑡) and 𝑠̃𝑟(𝑧, 𝑡) are treated in a similar way as(18) in Appendix A: 〈|𝑠̃𝑓 ,𝑟 (𝑧, 𝑡)||𝑆 ̃𝑓,𝑟 (𝑧 ′ , 𝑡 ′ − 𝑧 ′ )𝛿(𝑡 − 𝑡 ′ ),…”