The primary objective of this study is to quantify the rate of entropy generation within the Magnetohydrodynamic (MHD) slip flow system over the inclined needle. Entropy generation is a measure of the irreversibility and inefficiency in the flow process. The slip flow condition at the fluid interface can significantly impact the flow characteristics and heat transfer rates. In the hybrid nanofluid flow, which consists of non-magnetic and magnetic (Al2O3 and Fe3O4) are nanoparticles, are considered as the base fluid. Furthermore, the effects of inclined magnetic fields are taken into interpretation. The PDE’s governing equations are converted into ODE’s using similarity transformations and solved by a numerical technique based on BVP4C. The results illustrate that crucial parameter such as the magnetic parameter, mixed convection parameter, nanoparticles of solid volume fractions, and Prandtl numbers are pointedly impacted by momentum and thermal profiles. The entropy and Bejan number also consider being various relationship combined parameters. These analyses protest that raising the magnetic parameter estates an increase in the hybrid nanofluid thermal profile under slip circumstances. Examined magnetic field impact on flow and entropy generation in MHD flows, revealing significant changes in entropy generation due to interaction between magnetic field and nanoparticles. This analysis understands the impact of MHD and slip effects on entropy generation, particularly in the context of the newly emerging 50:50 fluid mixture. Hybrid nanofluids have been shown to have improved thermal conductivity compared to traditional fluids, which can enhance the cooling or heating capabilities of the inclined needle.