This paper summarizes a multinational collaborative project to search for natural, intimate associations between rhizobia and rice (Oryza sativa L.), assess their impact on plant growth, and exploit those combinations that can enhance grain yield with less dependence on inputs of nitrogen (N) fertilizer. Diverse, indigenous populations of Rhizobium leguminosarum bv. trifolii (the clover root-nodule endosymbiont) intimately colonize rice roots in the Egyptian Nile delta where this cereal has been rotated successfully with berseem clover (Trifolium alexandrinum L.) since antiquity. Laboratory and greenhouse studies have shown with certain rhizobial strain-rice variety combinations that the association promotes root and shoot growth thereby significantly improving seedling vigour that carries over to significant increases in grain yield at maturity. Three field inoculation trials in the Nile delta indicated that a few strain-variety combinations significantly increased rice grain yield, agronomic fertilizer N-use efficiency and harvest index. The benefits of this association leading to greater production of vegetative and reproductive biomass more likely involve rhizobial modulation of the plant's root architecture for more efficient acquisition of certain soil nutrients [e.g. N, phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), sodium (Na) and molybdenum (Mo)] rather than biological N 2 fixation. Inoculation increased total protein quantity per hectare in field-grown grain, thereby increasing its nutritional value without altering the ratios of nutritionally important proteins. Studies using a selected rhizobial strain (E11)