Natural killer (NK) cell responsiveness in the mouse is determined in an education process guided by inhibitory Ly49 and NKG2A receptors binding to MHC class I molecules. It has been proposed that inhibitory signaling in human NK cells involves Abl-1 (c-Abl)-mediated phosphorylation of Crk, lowering NK cell function via disruption of a signaling complex including C3G and c-Cbl, suggesting that NK cell education might involve c-Abl. Mice deficient in c-Abl expression specifically in murine NK cells displayed normal inhibitory and activating receptor repertoires. Furthermore, c-Abl-deficient NK cells fluxed Ca2+ normally after triggering of ITAM receptors, killed YAC-1 tumour cells efficiently and showed normal, or even slightly elevated, capacity to produce IFN-γ after activating receptor stimulation. Consistent with these results, c-Abl deficiency in NK cells did not affect NK cell inhibition via the receptors Ly49G2, Ly49A and NKG2A. We conclude that signaling downstream of murine inhibitory receptors does not involve c-Abl and that c-Abl plays no major role in NK cell education in the mouse, which contrasts with data in humans.