Background
A huge amount of research is carried out nowadays in Artificial Intelligence to propose automated ways to analyse medical data with the aim to support doctors in delivering medical diagnoses. However, a main issue of these approaches is the lack of transparency and interpretability of the achieved results, making it hard to employ such methods for educational purposes. It is therefore necessary to develop new frameworks to enhance explainability in these solutions.
Results
In this paper, we present a novel full pipeline to generate automatically natural language explanations for medical diagnoses. The proposed solution starts from a clinical case description associated with a list of correct and incorrect diagnoses and, through the extraction of the relevant symptoms and findings, enriches the information contained in the description with verified medical knowledge from an ontology. Finally, the system returns a pattern-based explanation in natural language which elucidates why the correct (incorrect) diagnosis is the correct (incorrect) one. The main contribution of the paper is twofold: first, we propose two novel linguistic resources for the medical domain (i.e, a dataset of 314 clinical cases annotated with the medical entities from UMLS, and a database of biological boundaries for common findings), and second, a full Information Extraction pipeline to extract symptoms and findings from the clinical cases and match them with the terms in a medical ontology and to the biological boundaries. An extensive evaluation of the proposed approach shows the our method outperforms comparable approaches.
Conclusions
Our goal is to offer AI-assisted educational support framework to form clinical residents to formulate sound and exhaustive explanations for their diagnoses to patients.