Objective
To develop and validate a natural language processing (NLP) pipeline that detects 18 conditions in French clinical notes, including 16 comorbidities of the Charlson index, while exploring a collaborative and privacy-enhancing workflow.
Materials and Methods
The detection pipeline relied both on rule-based and machine learning algorithms, respectively, for named entity recognition and entity qualification, respectively. We used a large language model pre-trained on millions of clinical notes along with annotated clinical notes in the context of 3 cohort studies related to oncology, cardiology, and rheumatology. The overall workflow was conceived to foster collaboration between studies while respecting the privacy constraints of the data warehouse. We estimated the added values of the advanced technologies and of the collaborative setting.
Results
The pipeline reached macro-averaged F1-score positive predictive value, sensitivity, and specificity of 95.7 (95%CI 94.5-96.3), 95.4 (95%CI 94.0-96.3), 96.0 (95%CI 94.0-96.7), and 99.2 (95%CI 99.0-99.4), respectively. F1-scores were superior to those observed using alternative technologies or non-collaborative settings. The models were shared through a secured registry.
Conclusions
We demonstrated that a community of investigators working on a common clinical data warehouse could efficiently and securely collaborate to develop, validate and use sensitive artificial intelligence models. In particular, we provided an efficient and robust NLP pipeline that detects conditions mentioned in clinical notes.