By the late 1960s, mainframe-based hospital information systems (HISs) had been developed that could integrate patient data in a single database. In the 1970s, minicomputers made it possible to link the subsystem databases for clinical subspecialties and ancillary services to the mainframe and integrate patient data into the patient records stored there. In the 1980s, microcomputer-based systems that had evolved independently for specialized services became subsystems of larger medical information systems with an integrating central database management system. Storage grew cheaper; registries became databases; databases became data warehouses; and secondary clinical databases were developed. The recognition that databases were equally as important for querying and retrieving data as for documenting care lead to addressing issues of terminologies and other data standards. The fact that much data was unstructured led to the development of natural language processing (NLP) for retrieving and understanding unstructured data. In the 1990s, patient care data expanded in volume and complexity, and innovative clinical information systems offered hospitals and clinics new capabilities. From the 1990s on, the impact of the Internet and the Web grew, enabling global exchange of clinical data and medical knowledge. In the 2000s, distributed information systems allowed physicians using clinical workstations to enter orders and retrieve test results across multiple medical center databases. In the 2010s, federal support greatly increased the use of computer-based patient records. Global wireless communications with cloud storage for translational networks evolved that linked data warehouses in collaborating medical centers nationally and offered mobile e-health care for individual patients.
Keywords