Atopic dermatitis (AD), a chronic skin condition characterized by itching, redness, and inflammation, is closely associated with heightened levels of endogenous reactive oxygen species (ROS) in the skin. ROS can contribute to the onset and progression of AD through oxidative stress, which leads to the release of proinflammatory cytokines, T-cell differentiation, and the exacerbation of skin symptoms. In this study, we aim to develop a therapeutic antioxidant hydrogel patch for the potential treatment of AD using lignin, a biomass waste material. Lignin contains polyphenol groups that enable it to scavenge ROS and exhibit antioxidant properties. The lignin hydrogel patches, possessing optimized mechanical properties through the control of the lignin and cross-linker ratio, demonstrated high ROS-scavenging capabilities. Furthermore, the lignin hydrogel demonstrated excellent biocompatibility with the skin, exhibiting beneficial properties in protecting human keratinocytes under high oxidative conditions. When applied to an AD mouse model, the hydrogel patch effectively reduced epidermal thickness in inflamed regions, decreased mast cell infiltration, and regulated inflammatory cytokine levels. These findings collectively suggest that lignin serves as a therapeutic hydrogel patch for managing AD by modulating oxidative stress through its ROS-scavenging ability.