The distribution of natural radioactivity levels of 238U, 232Th, and 40K in soils overlying the 3 lithologic units within Obafemi Awolowo University, Ile-Ife, Nigeria was investigated to characterize the gamma radiation dose distribution over the lithologies and to assess the radiation hazard due to the natural radionuclides. A thallium-doped cesium iodide detector was employed to determine the activity concentrations of 238U, 232Th, and 40K in 21 soil samples. The respective average concentrations of the 3 radionuclides are 37.7, 3.2, and 245.6 Bq kg−1 for granite gneiss, 31.9, 2.8, and 241.1 Bq kg−1 for banded gneiss, and 21.1, 1.7, and 196.7 Bq kg−1 for mica schist. The average concentration of 238U in granite gneiss lithology exceeds the world average value. The evaluated values of radiation hazard parameters including average absorbed dose rate, outdoor annual effective dose and external hazard index are below the recommended limits. The spatial distribution of the radiation hazard parameters evaluated over the lithologies has been delineated. The highest average cancer risk of 1.15 per 10 000 population was obtained for the study area within the soil overlying the banded gneiss lithology. Generally, the radiation hazard from the soils in study area poses no significant health hazard.