Pesticides are playing a dominant role in modern cultivation practices to increase agricultural production but are also criticized for environmental depletion and soil and underground water degradation in field applications. An imperative need for greener pesticides has emerged in alignment with new innovations in agrarian and agricultural practices. This study provides a comprehensive review of marketable and banned pesticides that have been applied in past times or are still in use in agriculture. The collected literature production disclosed 35 distinct pesticides that were identified either isolated or in mixtures and residues. These pesticides are primarily applied in agricultural fields, but some of them were also criticized for human implications. Then, these 35 pesticides were grouped into four categories: insecticides (18), herbicides (9), fungicides (6), and acaricides (2). Furthermore, their molecular types, chemical structures, pKa or log Kow values were presented. Based on their chemical structure, the pesticides were also organized into two domains: “marketable simulated” and “banned simulated”, representing 43% and 57% of total pesticides, respectively. The simulations were generated by linking the elemental composition of each pesticide in the corresponding category; therefore, three “marketable simulated” (the acaricides were not marketable representative) and four “banned simulated” were demonstrated. In addition, the calculation of “adjustment factors” (−0.33 up to +0.50) and the “as calculated/marketable (or banned) simulated pesticides” ratios (0.946 up to 1.013) enabled the identification of four clusters of homogeneous characteristics: cluster 1: “Insecticides, Fungicides, marketable”, cluster 2: “Herbicides, marketable”, cluster 3: “Insecticides, Fungicides, banned”, and cluster 4: “Acaricides, Herbicides, banned”. Subsequently, the composition of the elements of C and H enabled the crystallography characterization of only the “marketable” pesticides, not those that are “banned”, with compounds that have been already registered in the “Crystallography Open Database”. Conclusively, implications, challenges, and future research recommendations have been proposed.