The Italian national territory is characterised by the widespread presence of cavities dating back to different periods, especially in urban areas. The lack of knowledge of the position of the entrances, planimetric developments and state of preservation contributes to accentuating the unknowns related to sinkhole risk, which are directly related to potential cavity collapses with the opening of surface chasms. To deepen knowledge with a view to risk mitigation, a method has been developed to employ surveys obtained from Unmanned Aerial Vehicles (UAVs) to locate entrances even in hard-to-access urban areas. These surveys, properly supported with GNSS stations, were then integrated with cavity surveys obtained from low-cost lidar mounted on iPhones. Comparisons were made with traditional surveying techniques to better understand the reliability of the surveys made with low-cost lidar. The 3D models obtained, combined with geomechanical surveys of the rock masses hosting the cavities, allowed the application of simplified and empirical methods for an initial stability assessment. This method was tested on a portion of the municipality of Grotte di Castro (Province of Viterbo—Italy).