The radical ring‐opening polymerization of a lipoate‐based monomer, ethyl lipoate, in bulk and in solution was studied at various temperatures and it was found that in all cases, only limited (plateau) conversions were reached, which were lower at higher temperatures and/or at higher dilutions. It was established that a monomer‐polymer equilibrium exists with a corresponding ceiling temperature of 139°C. Due to the reversibility of the lipoate polymerization, when poly(ethyl lipoate) was heated to 150°C, it degraded and within 3 h, the molecular weight decreased to less than 15% of the initial value. Likewise, when the polymer was dissolved in anisole and a radical initiator was added, degradation was observed even at 60°C and it became increasingly pronounced at higher concentrations of the radical source. Due to the presence of multiple disulfide groups in the backbone, poly(ethyl lipoate) also degraded in the presence of reducing agents, such as tributylphosphine, yielding the reduced (dithiol) form of the monomer, ethyl dihydrolipoate.