As the molecular pathobiology of immunologically based diseases, such as rheumatoid arthritis, has become clearer, pharmaceutical researchers have responded with highly efficacious and selective biological compounds. In contrast to older, nonspecific small-molecule therapeutics, the exquisite species sensitivity of monoclonal antibodies has introduced new challenges to preclinical safety studies. Repeated exposure of animals to biopharmaceutical compounds tends to be restricted in the species in which these compounds have pharmacological action, and it tends to stimulate antidrug immune responses with acceleration of clearance, thereby limiting the duration of repeat-dose studies and potentially resulting in hypersensitivity reactions. Thus, the safety testing of biopharmaceutical compounds has necessitated the use of relatively short-term studies in rodents, whereas nonhuman primates have become the primary tool for large-animal, repeat-dose studies. However, as the number of highly targeted and efficacious small-molecule immunomodulators rapidly increases, these molecules will be developed in a manner similar to that of other small molecules with regard to safety assessment. Because such approaches inherently push drug levels to achieve maximally tolerated doses, the pharmacologic specificity of these new small-molecule drugs may be lost as they affect additional receptors and pathways. Therefore, toxicologic pathologists must refamiliarize themselves with the consequences of profound immunosuppression in species other than nonhuman primates. The interrelationships of cytokine signaling and receptor biology are complex, highly integrated, and at times paradoxical, and the loss of specificity at high doses may result in unforeseen consequences caused by the impact on complex down-stream pathways that culminate in exaggerated and adverse responses. The species specificity of such responses may not be inherently familiar or anticipated.