Abstract.The Bees Algorithm models the foraging behaviour of honey bees in order to solve optimisation problems. The algorithm performs a kind of exploitative neighbourhood search combined with random explorative search. This paper describes the Bees Algorithm, and compares its functioning and performance with those of other state-of-the-art nature-inspired intelligent optimisation methods. Two application cases are presented: the minimisation of a set of well-known benchmark functions, and the training of neural networks to reproduce the inverse kinematics of a robot manipulator. In both cases, the Bees Algorithm proved its effectiveness and speed. Compared with other state-ofthe-art methods, the performance of the Bees Algorithm was very competitive.