2015
DOI: 10.19026/rjaset.11.1682
|View full text |Cite
|
Sign up to set email alerts
|

Nature-inspired Parameter Controllers for ACO-based Reactive Search

Abstract: This study proposes machine learning strategies to control the parameter adaptation in ant colony optimization algorithm, the prominent swarm intelligence metaheuristic. The sensitivity to parameters' selection is one of the main limitations within the swarm intelligence algorithms when solving combinatorial problems. These parameters are often tuned manually by algorithm experts to a set that seems to work well for the problem under study, a standard set from the literature or using off-line parameter tuning … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
1

Year Published

2017
2017
2022
2022

Publication Types

Select...
4
2

Relationship

3
3

Authors

Journals

citations
Cited by 10 publications
(8 citation statements)
references
References 22 publications
0
7
0
1
Order By: Relevance
“…Keuntungan berinvestasi TI dapat berwujud dan tidak berwujud. Ada manfaat yang bisa langsung dirasakan, ada pula manfaat yang baru bisa dirasakan setelah jangka waktu tertentu [14]. Namun, dalam banyak kasus, manfaat ini tidak sesuai dengan hasil bisnis terbesar perusahaan.…”
Section: Pendahuluanunclassified
“…Keuntungan berinvestasi TI dapat berwujud dan tidak berwujud. Ada manfaat yang bisa langsung dirasakan, ada pula manfaat yang baru bisa dirasakan setelah jangka waktu tertentu [14]. Namun, dalam banyak kasus, manfaat ini tidak sesuai dengan hasil bisnis terbesar perusahaan.…”
Section: Pendahuluanunclassified
“…To avoid sensitivity to parameters selection, which is one of the main limitations in swarm intelligence algorithms, adaptive mechanism is adopted into CACS. ACO [28] used for comparison also proposed machine learning strategies to control the parameter adaptation. e objective function by different p and different algorithms is listed in Table 7.…”
Section: Comparative Analysismentioning
confidence: 99%
“…ACO is a swarm-intelligence metaheuristic algorithm used to solve combinatorial optimization problems. This algorithm was first applied to the traveling salesman problem and has since been widely applied to a variety of NP-hard optimization problems, such as quadratic assignment problems, vehicle routing with time windows, grid computing, and data mining [21], [22]. The first ACO algorithm is the ant system, proposed by Dorigo et al in the 1990s [23].…”
Section: Related Workmentioning
confidence: 99%