Gamma-ray detection following the inelastic neutron scattering reaction on isotopically enriched material was used to study the nuclear structure of 74Ge. From these measurements, low-lying, low-spin excited states were characterized, new states and their decays were identified, level lifetimes were measured with the Doppler-shift attenuation method (DSAM), multipole mixing ratios were established, and transition probabilities were determined. New structural features in 74Ge were identified, and the reanalysis of older 76Ge data led to the placement of the 2+ member of the intruder band. In addition, a number of previously placed states in 74Ge were shown not to exist. A procedure for future work, which will lead to meaningful data for constraining calculations of the neutrinoless double-beta decay matrix element, is suggested.