Solid-state 93Nb and 13C NMR experiments, in combination with theoretical calculations of NMR tensors, and single-crystal and powder X-ray diffraction experiments, are applied for the comprehensive characterization of structure and dynamics in a series of organometallic niobium complexes. Half-sandwich niobium metallocenes of the forms Cp'Nb(I)(CO)4 and CpNb(V)Cl4 are investigated, where Cp = C5H5- and Cp' = C5H4R- with R = COMe, CO2Me, CO2Et, and COCH2Ph. Anisotropic quadrupolar and chemical shielding (CS) parameters are extracted from 93Nb MAS and static NMR spectra for seven different complexes. It is demonstrated that 93Nb NMR parameters are sensitive to changes in temperature and Cp' ring substitution in the Cp'Nb(I)(CO)4 complexes. There are dramatic differences in the 93Nb quadrupolar coupling constants (C(Q)) between the Nb(I) and Nb(V) complexes, with C(Q) between 1.0 and 12.0 MHz for Cp'Nb(CO)4 and C(Q) = 54.5 MHz for CpNbCl4. The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequence is applied to rapidly acquire, in a piecewise fashion, a high signal-to-noise ultra-wide-line 93Nb NMR spectrum of CpNbCl4, which has a breadth of ca. 400 kHz. Solid-state 93Nb and 13C NMR spectra and powder XRD data are used to identify a new metallocene adduct coordinated at the axial position of the metal site by a THF molecule: CpNb(V)Cl4.THF. 13C MAS and CP/MAS NMR experiments are used to assess the purity of samples, as well as for measuring carbon CS tensors and the rare instance of one-bond 93Nb, 13C J-coupling, 1J(93Nb,13C). Theoretically calculated CS and electric field gradient (EFG) tensors are utilized to determine relationships between tensor orientations, the principal components, and molecular structures.