Pigeons (Columba livia) display reliable homing behaviour, but their homing routes from familiar release points are individually idiosyncratic and tightly recapitulated, suggesting that learning plays a role in route establishment. In light of the fact that routes are learned, and that both ascending and descending visual pathways share visual inputs from each eye asymmetrically to the brain hemispheres, we investigated how information from each eye contributes to route establishment, and how information input is shared between left and right neural systems. Using on-board global positioning system loggers, we tested 12 pigeons' route fidelity when switching from learning a route with one eye to homing with the other, and back, in an A-B-A design. Two groups of birds, trained first with the left or first with the right eye, formed new idiosyncratic routes after switching eyes, but those that flew first with the left eye formed these routes nearer to their original routes. This confirms that vision plays a major role in homing from familiar sites and exposes a behavioural consequence of neuroanatomical asymmetry whose ontogeny is better understood than its functional significance.