Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The task of organizing an informative route as an optimal spline trajectory of a moving object with an assessment of the informativeness of the map-aided navigation standard is completed. From the perspective of the planning approach, an optimal geometric path, passing through pre-determined iconic intermediate points, taking into account the avoidance of navigational hazards as “obstacle spots” has been formed. Within the framework of the strategy of informative planning of the spline path, the actuality of solving the problem of synthesizing the optimal trajectory in two variants is noted: by the methods of B-splines and classical polynomial interpolations as the implementation of the tactics of a mobile object movement in a conflict environment. A comparative characteristic of two alternative algorithms for solving the problem, specifying the advantages and disadvantages of each option, is given. As a demonstration of the practical applicability of the interpolation approach, the spline trajectory of an illustrative example in route of map-aided navigation is designed against the background of a contour map of isolines. Emphasis is placed on the possibility of forming the shape of the navigation isosurface due to the effective use of the curvature of the spline trajectory as a reproductive template for constructing an axonometric projection. A forecast about the trends of the possible use of a separate optimal trajectory of the object movement directly for the construction of the informative field profile of any degree of complexity is made. A hypothesis about the feasibility of practical use of chaotic architecture of spline gradients for effective planning of the optimal trajectory is put forward. The fan of spline gradient vectors with a personal orientation in the direction of the maximum change in the navigation function on each segment of the piecewise polyline of the path in the vessel routing procedure is considered. The issue of ensuring the possibility of making a coordinated decision on the vessel management by personnel due to the automated formation of spline trajectories in real time with synchronous representation of geometric computer support to the watch assistant, which allows us to offer integration of the tasks under consideration into the cloud-based intelligent technology of “augmented reality” is formulated.
The task of organizing an informative route as an optimal spline trajectory of a moving object with an assessment of the informativeness of the map-aided navigation standard is completed. From the perspective of the planning approach, an optimal geometric path, passing through pre-determined iconic intermediate points, taking into account the avoidance of navigational hazards as “obstacle spots” has been formed. Within the framework of the strategy of informative planning of the spline path, the actuality of solving the problem of synthesizing the optimal trajectory in two variants is noted: by the methods of B-splines and classical polynomial interpolations as the implementation of the tactics of a mobile object movement in a conflict environment. A comparative characteristic of two alternative algorithms for solving the problem, specifying the advantages and disadvantages of each option, is given. As a demonstration of the practical applicability of the interpolation approach, the spline trajectory of an illustrative example in route of map-aided navigation is designed against the background of a contour map of isolines. Emphasis is placed on the possibility of forming the shape of the navigation isosurface due to the effective use of the curvature of the spline trajectory as a reproductive template for constructing an axonometric projection. A forecast about the trends of the possible use of a separate optimal trajectory of the object movement directly for the construction of the informative field profile of any degree of complexity is made. A hypothesis about the feasibility of practical use of chaotic architecture of spline gradients for effective planning of the optimal trajectory is put forward. The fan of spline gradient vectors with a personal orientation in the direction of the maximum change in the navigation function on each segment of the piecewise polyline of the path in the vessel routing procedure is considered. The issue of ensuring the possibility of making a coordinated decision on the vessel management by personnel due to the automated formation of spline trajectories in real time with synchronous representation of geometric computer support to the watch assistant, which allows us to offer integration of the tasks under consideration into the cloud-based intelligent technology of “augmented reality” is formulated.
The issues of cybernetic security are considered in the aspect of effective proposals of alternatives to the satellite system in order to be able to promptly reorient to a backup positioning system in case of any technical problems. The assessment of the use of computer-specific competencies in the field of information technologies of the marine fleet as a secondary factor of end-to-end cybernetic security management is given. Information processing in a duplicate analogue of the positioning system is based on the technology of spline functions in order to extract the advantages of piecewise approximation for practical navigation purposes. The functionality of the navigator is analyzed within the framework of the «augmented reality technology» of the bridge of the future with the possibility of observational fixation of the look of the watch officer based on improved virtual professional scenarios against the background of the flow of typical navigation information. In addition to alternatives to the traditional positioning system, the requirements of space all-weather, system noise immunity and round-the-clock use in emergency situations, military conflicts and man-made disasters are formulated. In the circumstances of uncertainty of satellite systems, the problems of their vulnerability are theoretically leveled due to the intended use of navigation equipment based on other physical principles of operation. Correlation-extreme navigation through natural geophysical fields, the innovative e-LORAN project and the means of celestial navigation automated on the basis of computing resources of the onboard computer are highlighted as promising variants of the autonomous positioning principle. The research carried out in this work is combined with the results of experiments within the framework of the magnetic navigation project on the practical implementation of autonomous aviation positioning. Validation of the characteristics of the isotropic field as an informative standard of correlation-extreme navigation is confirmed by practical implementations of various fragments of geophysical fields in the form of three-dimensional visualizations of spline synthesis. The accuracy of geolocation with «terrain-referenced navigation» by extreme indicators is analysed. The forecast of achievability of the predictability effect of a mobile object location in a satellite-based environment is given with optimal motion control using predictive modeling, provided that an accurate assessment of the uncertainty of the navigation system is foreseen. The algorithms tested on the methods of spline functions to ensure authoritative positioning are performed as an intellectual support for the ship’s management staff in an emergency situation.
An analytical review of the current problems of practical use of the planetary magnetic field as a geophysical basis for navigation is provided in the paper. A hypothesis about the possibility of orientation by an individual signature of a certain geographical area has been put forward and it is based on the fact that the Earth has a measurable magnetic field in any place and at any time, which makes the contours of abnormal magnetic intensity a reliable source of navigation. The results of domestic and foreign studies on the identification of the experimental mean square error of magnetic positioning for determining coordinates with an index of 10 m are analyzed, which in the perspective creates a precedent for supplementing magnetic navigation with the reliable backup global positioning systems. It is noted that navigation by the variable mutability of the magnetic field demonstrates a high-precision positioning potential in GPS-denied environment. As a result, the point of view of the necessity to search for an alternative method is emphasized. The actuality of creating a duplicate system is motivated by the fact that the reliability of global positioning is the subject of attention when studying the issue of cybernetic awareness for the both marine and aviation applications. The innovative approach is considered in a broad aspect, taking into account the possibility of constructing an effective configuration of an artificial neural network to remove the local magnetic field of a ship or aircraft from the measuring data of a magnetometer when using a machine learning algorithm to ensure the reliability of autonomous navigation both in near-Earth space and indoors. A three-dimensional visual representation of a digital model of a simulated magnetic field based on basic finite splines is implemented in two comparative versions: an approximated perspective of magnetic anomalies and its stylized frame model with a mathematical justification of the feasibility of using different methods as optimal standards for mapping the informativeness of magnetic positioning. The planning horizon for the incorporation of spline technology into navigation information processing has been theoretically expanded to a strategy for using a gradient approach in synthesizing the heterogeneous structure of the geophysical field in order to effectively position mobile objects based on realistic consideration of the architecture of multifactor orientation of the gradient vectors spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.