Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti-and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana. We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis. A utophagy is a conserved intracellular pathway that engages specialized double-membrane vesicles, called "autophagosomes," to enclose and transport cytoplasmic content to lytic compartments for degradation and subsequent recycling (1). Autophagosome formation relies on extensive membrane rearrangements and is mediated by the concerted action of a core set of autophagy-related proteins (ATGs) (2, 3). At basal levels, autophagy serves mainly housekeeping functions in cellular homeostasis, whereas stimulated autophagy activity facilitates adaptation to developmental and environmental stress conditions including starvation, aging, and pathogen infection (1, 4). Ample evidence now indicates that autophagy, initially recognized as a mainly bulk catabolic process, is able specifically to target and degrade a multitude of cellular structures ranging from individual and aggregated proteins to entire organelles and invading microbes (5, 6). Selectivity is provided by a growing number of autophagic adaptor or receptor proteins identified in eukaryotic organisms that recruit the cargo to the developing autophagosome through interaction with membrane-associated ATG8/LC3 proteins (7, 8). Several mammalian autophagy receptors have been implicated in the targeting of intracellular bacterial and viral pathogens in a process called "xenophagy" (8-10). For instance, the cargo receptor p62 (SQSTM1) was shown to bind directly to and mediate autophagic clearance of different viral capsid pr...