Background
Bacillus subtilisstrain NCD-2 is anexcellent biocontrol agent against plant soil-borne diseases and shows broad-spectrum antifungal activities. This study aimed to explore all the secondary metabolite synthetic gene clusters and related bioactive compounds in NCD-2. An integrative approach, which coupled genome mining with structural identification technologies using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-MS/MS), was conducted to interpret the chemical origins of the significant biological activities in NCD-2.
Results
Genome mining revealed that NCD-2 contained nine gene clustershaving predicted functionsinvolving secondary metabolites with bioactive abilities. They encoded six known products-fengycin, surfactin, bacillaene, subtilosin, bacillibactin, and bacilysin-as well as three unknown products.Interestingly, the synthetic gene clusters for surfactin and fengycin showed 83% and 92% amino acid sequence similarity levels with the corresponding productsin Bacillus velezensisstrain FZB42. A further comparison of gene clusters encoding fengycin and surfactinrevealed that strain NCD-2 had lost thefenC and fenDgenes in the fengycinbiosynthetic operon, and that the surfactin synthetic enzyme-related gene srfAB was divided into two parts.Abioinformatics analysis showed that fenEAmay function as fenCD in synthesizing fengycinand that the structure of thisfengycin synthetic gene clusteris likely unique to NCD-2.Five kinds of fengycin,with 26 homologs, and surfactin,with 4 homologs,were detectedfrom strain NCD-2, which indicated the non-typical and unique nature of this fengycin biosynthetic gene cluster.To the best of our knowledge, this is the first report of a non-typical gene cluster related to fengycin synthesis.
Conclusions
The data provide the genetic characteristics of secondary metabolite synthetic gene clusters for fengycinand surfactin in B. subtilis NCD-2, including the unique synthetic mechanism for fengycin, and suggest that bioactive secondary metabolites explain the biological activities of NCD-2.