The rate constant of the reaction NCN + O has been directly measured for the first time. According to the revised Fenimore mechanism, which is initiated by the NCN forming reaction CH + N(2)→ NCN + H, this reaction plays a key role for prompt NO(x) formation in flames. NCN radicals and O atoms have been quantitatively generated by the pyrolysis of NCN(3) and N(2)O, respectively. NCN concentration-time profiles have been monitored behind shock waves using narrow-bandwidth laser absorption at a wavelength of λ = 329.1302 nm. Whereas no pressure dependence was discernible at pressures between 709 mbar < p < 1861 mbar, a barely significant temperature dependence corresponding to an activation energy of 5.8 ± 6.0 kJ mol(-1) was found. Overall, at temperatures of 1826 K < T < 2783 K, the rate constant can be expressed as k(NCN + O) = 9.6 × 10(13)× exp(-5.8 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (±40%). As a requirement for accurate high temperature rate constant measurements, a consistent NCN background mechanism has been derived from pyrolysis experiments of pure NCN(3)/Ar gas mixtures, beforehand. Presumably, the bimolecular secondary reaction NCN + NCN yields CN radicals hence triggering a chain reaction cycle that efficiently removes NCN. A temperature independent value of k(NCN + NCN) = (3.7 ± 1.5) × 10(12) cm(3) mol(-1) s(-1) has been determined from measurements at pressures ranging from 143 mbar to 1884 mbar and temperatures ranging from 966 K to 1900 K. At higher temperatures, the unimolecular decomposition of NCN, NCN + M → C + N(2) + M, prevails. Measurements at temperatures of 2012 K < T < 3248 K and at total pressures of 703 mbar < p < 2204 mbar reveal a unimolecular decomposition close to its low pressure limit. The corresponding rate constants can be expressed as k(NCN + M) = 8.9 × 10(14)× exp(-260 kJ mol(-1)/RT) cm(3) mol(-1) s(-1)(±20%).