Purpose
The purpose of this work is to implement an ambient intelligence (AmI) testbed to improve human sleeping conditions.
Design/methodology/approach
The implemented testbed is composed of the sensor node, sink node and actor node. As sensor node, the authors use a microwave sensor module (MSM) called DC6M4JN3000, which emits microwaves in the direction of a human or animal subject. These microwaves reflect back off the surface of the subject and change slightly in accordance with movements of the subject’s heart and lungs. As sink node, the authors use Raspberry Pi 3 Model B computers. In the sink node, the data are processed and then clustered by the k-means clustering algorithm. Then, the result is sent to the actor node (Reidan Shiki PAD module), which can be used for cooling and heating the bed.
Findings
The authors carried out simulations and experiments. Based on the simulation results, it was found that the room lighting, humidity and temperature have different effects on humans during sleeping. The best performance is shown when LIG parameter is 10 units, HUM parameter is 50 and TEM parameter is 25. Based on experimental results, it was found that the implemented AmI testbed has a good effect on humans during sleeping.
Research limitations/implications
For simulations, three input parameters were considered. However, new parameters that affect human sleeping conditions also need to be investigated. Further, the experiments were carried out for one person. More extensive experiments with multiple people are needed to have a better evaluation.
Originality/value
In this research work, a new fuzzy-based system was implemented to improve human sleeping conditions. The authors presented three new input parameters to evaluate the output (sleeping condition). The authors implemented and evaluated a testbed and showed that the implemented AmI testbed has a good effect on humans during sleeping, thus improving their quality of life (QoL).