In the dry cask storage of spent nuclear fuels, a stainless-steel canister acts as an important barrier for encapsulating spent fuels. As a result, local corrosion behavior of 304L stainless steel has become an issue of concern in the wet coastal region and salt spray environment. The test was conducted after deposition of simulated sea salt particles on the 304L stainless-steel specimen. It was first covered with a crevice former, and then kept at 45 °C with a relative humidity of 45%, 55%, and 70%, respectively. The surface morphologies and electron back scatter diffraction (EBSD) analysis of the corroded region for the 304L stainless-steel specimen are presented in this paper. The goal of this work was to investigate the crevice corrosion behavior of 304L stainless steel under different chloride concentrations and relative humidity conditions. From the experimental results, a threshold relative humidity for stress corrosion cracking (SCC) initiation of 304L stainless steel was proposed.