Whole genome sequencing (WGS) has the potential to greatly enhance AMR (Anti-microbial Resistance) surveillance. To characterize the prevalent pathogens and dissemination of various AMR-genes, 73 clinical isolates were obtained from blood and respiratory tract specimens, were characterized phenotypically by VITEK-2 (bioMerieux), and 23 selected isolates were genotypically characterized by WGS (Illumina). AST revealed high levels of resistance with 50.7% XDR, 32.9% MDR, and 16.4% non-MDR phenotype. A total of 11 K. pneumoniae revealed six sequence types, six K-locus, and four O-locus types, with ST437, KL36, and O4 being predominant types, respectively. They carried ESBL genes CTX-M-15 (90.9%), TEM-1D (72.7%), SHV-11 (54.5%), SHV-1, SHV-28, OXA-1, FONA-5, and SFO-1; NDM-5 (72.7%) and 63.6%OXA48-like carbapenamases; 90.9%OMP mutation; dfrA12, sul-1, ermB, mphA, qnrB1, gyrA831, and pmrB1 for other groups. Virulence gene found were Yerisiniabactin (90.9%), aerobactin, RmpADC, and rmpA2. Predominant plasmid replicons were Col(pHAD28), IncFII, IncFIB(pQil), and Col440. A total of seven XDR A. baumannii showed single MLST type(2) and single O-locus type(OCL-1); with multiple AMR-genes: blaADC-73, blaOXA-66, blaOXA-23, blaNDM-1, gyrA, mphE, msrE, and tetB. Both S. aureus tested were found to be ST22, SCCmec IVa(2B), and spa type t309; multiple AMR-genes: blaZ, mecA, dfrC, ermC, and aacA-aphD. Non-MDR Enterococcus faecalis sequenced was ST 946, with multiple virulence genes. This study documents for the first-time prevalent virulence genes and MLST types, along with resistance genes circulating in our center.