A multi-physics approach for the assessment of alkali silica reaction (ASR) generates new foundational understanding of the nature of the reaction, which ultimately can be used for the development of techniques and tools for the assessment and monitoring of existing concrete structures. The approach combines two nondestructive evaluation techniques: (1) nonlinear acoustic measurements, which are sensitive to microcracking; and (2) microwave materials characterization measurements, which are sensitive to moisture including the transition of water from its free state in the pore solution to a bound state within accumulating ASR gel.Comparison with assessment of expansion and damage rating index obtained from petrographic analysis on standard mortar bars shows a correlation between all of the measures. Specifically, a strong correlation is found between the cumulative average nonlinearity parameter and expansion, and there is also agreement of the microwave measurements with the damage rating index.