Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Abstract. The finite pressure present in vacuum chamber testing of space propulsion systems such as Hall thrusters can have a number of undesirable effects. For example, the thrust generated by the thruster is higher and the plume divergence angle larger in ground tests in comparison to space operation. To try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison of the simulation results is made with experimental measurements of pressure obtained with a series of ion gauges. The mass flow rate through the thruster and the total pumping speed of the vacuum chamber are varied. A key physical parameter in the simulations concerns the probability that a xenon atom incident on a cryogenic pumping panel actually sticks to the panel. For a reasonable range of values for the sticking coefficient, excellent agreement between simulation and experiment is obtained for several different conditions.
REPORT DATE (DD-MM-YYYY)
REPORT TYPE
Technical Papers
DATES COVERED