1993
DOI: 10.1007/bf01581269
|View full text |Cite
|
Sign up to set email alerts
|

Near boundary behavior of primal—dual potential reduction algorithms for linear programming

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
5
0
1

Year Published

1993
1993
2003
2003

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(6 citation statements)
references
References 13 publications
0
5
0
1
Order By: Relevance
“…where X = diag(x), S = diag(s), e is a vector of ones of appropriate dimension, and p' is a parameter related to p. Kojima, Mizuno, and Yoshise choose p' = p. Ye et al (1993) generalized their result to the case where p' is not restricted to equal p and can vary from one iteration to the other. If p' is chosen carefully, it is possible to maintain the guarantee of constant reduction in every iteration and to improve the practical performance.…”
Section: Potential Functions For Linear Programmingmentioning
confidence: 99%
“…where X = diag(x), S = diag(s), e is a vector of ones of appropriate dimension, and p' is a parameter related to p. Kojima, Mizuno, and Yoshise choose p' = p. Ye et al (1993) generalized their result to the case where p' is not restricted to equal p and can vary from one iteration to the other. If p' is chosen carefully, it is possible to maintain the guarantee of constant reduction in every iteration and to improve the practical performance.…”
Section: Potential Functions For Linear Programmingmentioning
confidence: 99%
“…For any x 2 X and z 2 R n , a) kP(x + z) xk= is a nonincreasing function of > 0, b) kP(x + z) xk= kzk.Before proving the main result (Theorem 4.5), we show that the conditions (9),(10) ensure that the projection is computed exactly when x k is critical (Lemma 4.3) and, in a technical result, show that the algorithm produces descent at a noncritical point (Lemma 4.4).Lemma 4.3. Suppose that (A) holds and that (B) holds at z = x k .…”
mentioning
confidence: 90%
“…We state without proof the following well-known result, which actually applies for any closed convex X R n . From (10) and the fact that C 1 < 1, 1 =2 2 k ( ) 1 C 1 2 > 1 2 0; since 2 0; 1] and > 2. Since k ( ) 0, the inequality (22) can hold only if k ( ) = 0.…”
Section: Introduction We Address the Problem Min X F(x)mentioning
confidence: 97%
See 1 more Smart Citation
“…On voit que λ est borné.On a donc ∆ ∼ y + Y 2 ( b i − λĉ). La droite d'origine x =x + R t y et de direction R∆ passe donc très près de la solution optimalex et est donc une très bonne direction de descente, on voit d'après l'équation(18) que la distortion dueà c diminue lorsque p diminue. Par ailleurs, dans la recherche linéaire, le numérateur ( c, x −α) p est moins proche de 0 si on travaille avec f p , la quantité p log( c, x −α) est moins proche de −∞ si on travaille avec g p , la détermination du pas est donc moins sujetteà erreurs.…”
unclassified